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We prove a classification theorem which permits us to simplify second-order
systems; in particunlar. to replace series in the right-hand side by polynomials
without violating solution properties preservable by analytic transformations in
the neighborhood of a singular point, Among such properties are all the topo-
logical ones, The most important one of them is stability, Although the ques~
tion of stability in critical cases (resonances of order ¢ =1, ¢ = 2) have been
studied in detail in [1— 3], an arbitrary resonance in a second-order system
yields the simplest nontrivial model the investigation of which helps us to un-
derstand the nature of critical cases and its relation with local topological (in
particular, analytic) equivalence of systems of differential equations [4, 5],

In contrast to methods of reducing systems to normal form [6], in the present
paper we use a group-theoretic approach, The study of the orbits of a group
induced in coefficient space by the group of all analytic homeomorphisms of
the neighborhood of a singular point, allows us to describe the set of systems of
differential equations, obtained from each given system by analytic transforma-
tions, Thus, having computed all the transformation invariants we can com-
pletely classify the systems being considered, Here we clarify that the normal
form is poorly suited for such a classification since it does not contain all re~
presentatives of classes of analytically equivalent systems, The case of purely
imaginary eigenvalues of the linear part has been considered separately by the
author (*).

1, Statement of the problem and the result, We consider a set of
second~order systems of differential equations

dxl/dt =mZ + h (Cv Ly x2) (’Li)
dxy | dt = — nyZy + fa (€, 21, Z5)

where 7n;, n, are relatively prime fixed positive integers; f,, f, are all possible real
functions, analytic in a neighborhood of the point z = {z,, 2,} = 0 , with expansions
without linear terms; ¢ = {cy, Cq, ...} is an ordered collection of the coefficients of
these expansions, The set of all ¢ to which there correspond convergent series, forms
an infinite-dimensional space /I. A certain point ¢ & 1! corresponds to each system
(1.1).

Definition 1, The systems ¢’ €= R and ¢" €& R are analytically equivalent
(locally) if there exists an analytic homeomorphism of a neighborhood of the point

*) Analytic equivalence and stability of second-order systems with 1:1 resonance,
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z = 0 into itself, wansforming these systems one into the other,

The problem is to find the necessary and sufficient conditions for the equivalence of
systems (1,1) in the sense of Definition 1,

An ordered collection of coefficients of homogeneous forms of fixed degree s, con-
tained in the expansions of functions };, /o, are considered as the coordinates of a point
of an Euclidean space R.*. weset R, = R,*, R, = R* X R, (direct product),
s = 3, 4, .... The order relation for R; and R on a coincident set of elements is
assumed identical, The coefficients of sth-degree polynomials obtained from the expan-
sions of f,, f, by discarding terms of order greater than s, are the coefficients of the
point ¢, &= R, . If N, is the total number of these coefficients, then

dimR, = N,

The space R can be treated as the inductive limit of the sequence R,, Rj, ... .

Let us consider the group G of all analytic transformations of a neighborhood of the
point z = 0, leaving this point in place and preserving the linear part of system (1,1),
Transformations of group G induce the transformation group G’': G’ X R — R(*),
so that every transformation from G X G’ transforms system (1.,1) into a system of the
same form with a phase vector z’ and coefficients ¢’. It is easily verified that the spa-
ces R, are invariant relative to transformations from group G, while the collection
of transformations from G’ not identically acting in R, forms a Lie Group G'. Here

dimG," = N,+ 2
Let
U= 2 aklk2x1k1x2kz
ks, k=M
be an arbitrary polynomial or a formal power series and let [V be the set of values of
the integral function %,n; — kolp for ky, ks = M. If v &= N, we set

u = Z Qo1 F 1Ty e
king—Kkomo=v

Then there hold the single-valued expansions
u:ZuV:ZZum“, 'VE[V, m=k1+k2

With system (1,1) we associate the operator
0 ' o
L= (mzy + f1) 5 + (= mada + fo) 5~
We consider the formal series u = Uy -+ Ugyy + ... (where g = n; + n, is the order
of the resonance), satisfying the conditions

(Lu)* =0 forall v==0 1.2)
U = uy = T L™
Then

oo

Lu = 2 (Lu);q = 2 Gy = Z 8xq (€) ()22 ™)*
=2 ®x=2

x=3

*) The corresponding equations are written out in finite form [7],
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Here the parameters g,q do not depend on the phase vector z, and % is the exponent
of the monomial u, = xy™x,™.
Theorem 1, The collection of manifolds in R

Ty 8y Q) =... = 8o =0, B(hanye ©) F 0

exhausts, for h < o0 , all invariant manifolds of group G’. On each invariant manifold
[, the group G’ admits of [ -k invariants (I >1)

I (), ... Inu (o)

For x <C h + 1 the functions gy, (c) and /. (c) depend only on the points ¢ & R.,
So = 2gh + 1. The systems ¢’ & R and ¢” &= R are equivalent if and only if the
points ¢’ and ¢” lie on one and the same invariant set

R =k, L) =I(") @<z<h+)

and belong either to one and the same connection component (points ¢’ and ¢” can be
connected by a continuous curve lying in the same invariant set on which these points
themselves do) or to two different ones provided that there exists a mapping ;= —
I,, Iy’ I, generating a homeomorphism of these components one into the other,
The following theorem describes the only case when the application of Theorem 1
does not require an actual computation of the invariants,
Theorem 2, System (1,1) is formally equivalent to the system

8

d.’t] |\l

T = %+ Z fue

p=2

l s

14 2]

= %t Z fa, 1
p=2

obtained from system (1.1) by discarding terms of order higher than s in the expansions,

For one of the simplest cases, ~ = 1, ¢ = 2 (pure imaginary eigenvalues of the
linear part) the invariants of group G’ (there are two) have been computed explicitly,
This has allowed us to classify systems admitting of an analytic symmetry group, The
special result indicated is contained in the following theorem.,

Theorem 3, For h = 1, g = 2 the set of formally nonequivalent second-order
systems is described by the systems (in polar coordinates)

p"=p%(61+ Gy%aP?) (1.3)
" = 03 -+ Ga%s0

when the pair (%;, %,) of numerical parameters ranges over the whole real plane and
the O; take the values =1 independently of each other,

We note that systems (1, 3) are easily integrated and yield 24 topologically different
pictures in the space x X ¢ . The proof of Theorems 1 and 2 is carried out in Sect, 3,
It is preceded by the tormulation of auxiliary propositions (Sect, 2) whose proofs, except
for the fundamental Lemma 6, are omitted (they may be reproduced by the scheme given
in [7]). Theorem 3 is proven in Sect, 4,
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2. Auxiliary propositions, Lemma 0, Conditions(1,2) define the formal
series

i U = 1?1”’.’02“1 + Ugs1 + PN (2‘11)
uniquely,
Py [P Py £ T L W Py

Definition 2, A series{2,1) satisfyinf conditions (1, 2) is said to be standard,

Definition 3, A formal series v satisfying the equation Lv = wypi1) +
(g{p + 1)+ 1),in which the form wyp,y) 5= O is the lowest term in the expansion
of the right-hand side, is called a p-series, The description of all p-series yields the
following lemma,

Lemma 1, Let qu, computed

Then:

1) there does not exist a formal series satisfying the equation Lv == 0 in all
orders ;

2) the set of all p-series coincides with the set of formal series of the form

¢lu] = aur 1+ 0 (g(p—h-+1)+1), a0

where u is a standard series, y#-"+1 is a power of it;
8) if v is an arbitrary p-series, then

—a(p—h+D)uf Gruag + 0@+ +1)

fet E=F, &g+ ..M =M+ M+ - .. be formal power series, The ope~
rator series Z = Zp + Zyyy + ... (Zp = Epd [/ dxy + Mud [ 0xy) is called an operator
of order k. We set Zy' = E,f"‘r?/axl -+ " 3/ dxy. As usual, let [L, Z] be a com-
mutator,

Lemma 2. If anoperator Z of order W satisfies the equation [L, Z} = 0 1
within terms of order m > W, then Z, = Z,° , necessarily,

p 0, B kg 41
BT e, X R BL), B= kg Rt

where oy, Bp are constants,

d 0 a a
Xy =Tig=t % 5= Ln= M@y g — Ty o

Zo
Lemma 3, Let the operator Z = Zu + Zp,; + ... satisfy the conditions

[L, ZI* =0 forall v =0, 7° = [° (2.2)

where the operator U° is preass;gned Conditions (2, 2) define operator Z uniquely,
The identity
L 21~ U 21 = 3 (L 2y (L 2l 0 2-3)
x==p
is valid for the operator 7 defined by conditions (2,2).

Definition 3, The operator Zy = Zugqu -+ Zpgez + --- satisfying identity
(2. 3) is called a p-operator, If the operator [/° is chosen so that the number p is maxi-
mal, operator Z is called maximal,

According to Lemma 2, maximal p-operators necessarily form the linear hull of the
set of independent operators of the form
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X =u" X+ Xpgiet .oy Yy =ugtLy+ Yuga+... (24)
The immediate problem is to compute for them the positive integers p and T =¢q (p —

).
Lemma 4, Letthe operator X = X = X, + X, + ... be maximal, We

have o ° ° °
[L’ X] = pqm+1 + Pq(m+1)+1 7“‘ LY ) qu+1 = [L'; X]qk+1
The inequality m <C h is valid,
lemma 5, The e equality [L, Z]="Ppgs1 + Plprgss + -+ -+ in which
g ¥p° m<h, au#o

j— mq+l’
qu+1 -

ap'uqHquJr1 + uuq (h+1)q (ale -+ bP-Ll)’ m=~nh

is valid, independently of the choice of Z&L) , for the maximal operator Z,, = ug*
(apX 1+ bpLy) 4 .. (bu®+- au? 5= 0).
Lemma 6, (1) Whenay 5= Othe maximal operators Zy) are contained among the
X (). For them
p=p—+m, T=gqm
2) When ap =0, u=~m the maximal operators Z,, are contained among the
operators Y (). For them

p=p +2h—m, T == q (2h — m)

3) For 4 = m and for finite . there exists a unique operator Zimy = Y (m)
satisfying the equation [L, Z] = 0 in all orders, Forit © = <.
Proof, By virtue of Lemmas 4 and 5 the proof of Lemma 6 splits up into the cases:
(1) m =n (2) m<h, a,==0; (3) m<h n,L—O
1) Let m =h.Then [L, X} = thﬂ - Pq(h+1) + ... . Let us ascertain the struc-
ture of operator P,,h +1- For a standard series « ,
L(Xu)y=[L, XTu-- XLu = qh+1' a1 (R4 1) G, sq
P;h+1 = uq (A +BLy)
Hence N -
L(Xuy=g @+ tr+1)gpygtg .-
Let us show that 2 4- (A 4-1) Clhay)q F 0. Assuming the contrary, we find L (Yu) =
Woihsny T - - - =1. We define the series o -=a by the relation (L)’ =
w’ solvable for all v==0, Then,

g Ch+1)+1 70t

Ly =w—Lo=u®~—(Lo)" - u';;(,“r,l.) = .. (E>1)
i.e, v=Xu—ow=gu,+... isan {h 4- k)-series, which is impossible when k> 1"

(Lemma 1) , Hence, using Lemma 1 repeatedly, we obtain

n
a=-—hg gher =g (— &gy X1 +BLY

s P,

By the formula in Lemma 5 we find

Popsn = B —Hh)

H
i1 P S T 2

QR (nir) g 2
by == By + Wouniny g
Thus, for m =%,
. 1 ’ 9
(L. Zgy)l = uly Rl — R) @yt gy o X1+ b L] (2.5)
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a

and this result does not depend on the choice of the operators Z; @y L iy e

In other words, when m = h, W4 (if ¢ =0, then bu#()) the operator Z(m is maximal

and for it
ot p=W+h  T=qh

When @ =h we take b, = —Ba,/1gg . 1y, Then

b}x =0, [, Z(h)} = [q (2h+1)+l
By formula (2, 5), )
L, Zipagy) =25 [0haa%(nan) gF 1+ B Ll -

b;Hl = a,,8 +(+ D80 g

. L -
Since Py o,y = ,,3*‘”1 (21X 4 By Ly), having taken
o B — “h+1«B

a mm —— i) o —
h+l g(h+1) a ' h+1 (h -+ 1) g(h‘{'l)'

we obtain ~o
L, Z(h) '—Z(mn] =P s{2hi2)41 SR

Acting analogously, i, e, choosing in the operators Z, ., = u ¥ (@ Xatbp )+
parameters a,.;, by, from the formulas

. %k b — By —an.iB
htk, g(h+1) q ’ htk (h + k) g(h-; K)gq
we construct the unique operator Z = Zg, — Zg,, 1y — (pyg) — - - - satisfying the equation

[L, Z] = 0 in all orders,
2) let m<h, ap# 0. According to Lemma 5

(L, Zgy] = oyl Pony + -

Since this result is independent of the choice of operator Z}w, the operator Z,,, is
maximal and p=n-m, T == qm

Without loss of generality b, = 0, so that Z, is found among the operators X, .
3) Now let m <%, a, = 0. By means of the constructions already used earlier we

see that qu g =0, whence

Pymi = Bm“quy B,+0 (2.6)
If Yy =1y, YL, +Yqu,p+ .- is a maximal operator, this signifies that the values of
Yoqeni = u**H (a(”’) BN L1) are chosen for 72> 1 in such a way that the num-
ber p in the relanon 0 ° .
[Ly Yl = Qgpay T Queprpyer T+
is maximal, It is not difficult to prove that from the maximality of p follows

Q;PH.“Q #0 27

Further, let a{) =0 foi 1< y,and aff® =£0.For 1 <y<{Yo we define inductively

the operators © " - ) ,
o <) oy P4yl p
YO =Y, Y o= YD — WP L 2.8)
By induction on 7 and by direct verification for 7 =1 we see that the formulas
Gy e
(L Y = —d MG Ly

Y(Y) = b(‘ u‘L”L - Y(") . IS —1

GO +2
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are true for Y =1,..., Yo — 1. We define

Y{Te) (Yo-l) Pty (1) (Yo, +
Y —u byl = Y (H+Yo'l)+2 T
We obtain

[L, Y(Yo)] = W‘q (h+1)q Sk
Since Yo <{ A, from this we have

Y?(ﬁﬂ»-l)ﬂ e = Yggwo) 0
ng{}i«t—h)ﬂ (Yfz(s»w.)u = “?ﬁ (“z(ﬁ)v.,*xx + 53'?%51}
Further,
Y("’“) —_ Y(‘Yo) — e (a(‘*) X+ bﬁ?y L) Yé’{ﬁ&m L. 2.9)
Y&o)ml = — B G ely — — o b uh VP -
The equality
= puf;'lG(mle + a&i{, uy P qms1 =0

is necessarily fulfilled, from which follows
Te==h—m

since any of the three assumptions
) Yo >h—m, 2) Yol B —m, NYe=h—m, P£0

leads to a contradiction (this is proved by means of constructions of a single type).
Thus,
a) = ... =all) =0, o 0 (2.10)

25 Hth-m—~1 U-+h -m

Using the recurrence relations (2, 8) and equalities (2, 9) and (2.10), we find

Y QL+ ol uthmy oyl 4+

W = q(itro)+2
Qo= u bg?luwl T bﬁ?h_mup“*h“m
where @ is a polynomial of degree p 4 h--m relative to a standard series, We con-
sider the series w=Y,,u. We have
w=qaly g«m—mﬂ + ...

We denote G = G,yy + Gipig T - .. and we introduce the series

W == — QG = (]a“(ﬁ)hﬂmu!;w&h—mfl 4

A simple calculation yields
Lw' = Q) g+ (4 1) 00l _gmpgtn ™ ™ 4 (2.11)
Let ¢(p+1)<q¢@ 42k —m 41). Then Lu'=Q,, u,+ ... and @’ is a p~series,

According to Lemma 1, bW+ h-—m {1 =p—+h--1 and,consequently, q(p +1) =
q (B 4 28 —m -- 1), in spite of the assumption, It ¢(p -+ 1) > ¢+ 2o —m 1), then
Lw’ =q (h+1)al?, _ " Gy

and ' is a (u -{- 2k — m)-series, But by Lemma 1 we should have

L' = (@ 4 b —m 1) qall)y w0
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which is impossible when p 2m .,
Thus, if W= m, the equality q(p+-1) =g (4 + 2k —m + 1) is fulfilled, whence
P =P+ 2h —m. Here we obtain

o h—
qu+1uq = (1 —m) qa[(l?h~m"g'+ mG(h+1)q 4.
so that
U+2h- 1 —
(L, Yl = (# —m) a,‘(\fir)h_mg(h“)qu;+2 "X, + Ap.uﬁﬂh ML 4 ... (2.12)

Thus, the operator X vy Is maximal for p==m and
p=p+2h—m, T=q(2h—m)

Now let p=m. Then v’ = qagl’“)ug“ +4... and by Lemma 1

L' =g (h+1) aMgp 1 ud + ... (2.13)

Hence it follows that p > 2. Indeed, the assumption p < 2k, ensuing fromgq (p + 1) <
¢ (b + 2k —m + 1) with p = m, leads to a contradiction as we have shown, From
P = 2 hfollows Qoprita =0 (by means of comparing formulas (2,11) and (2,13)),
which contradicts (2, 7), Thus, p>>2k in the relation

[L, Y(m)] = Q;p+1 + Qq(p+1)+1 de-
Let us show that in fact there is no finite,p whatsoever that can be maximal, Indeed,
fet Q;}Hl =uf (CX1+ DLy), C24-D2k0
We consider the maximal operators Y, .. on), X(;_m) For them
L)Y pim—amy) = a;:p—w;lmﬂh)g(hu)q (P — 2Ry ug X + Ay gLy - ee

(@5 4 0)

(L, X

(p-m)] =@

P
p_mBmuq L1 B

(T By %= 0)

We determine the numbers « and § by the formulas

¥y —2h v
a0 g (P — 2h) = €

A mogn BBmap~m.= D

This is possible since the determinant of this system

- . - m—h
A= (p—2h) B g, mal " g g 0

The operator ¥V = Y iy — a¥ —B¥m satisfies the equation

(1:+m-2h)

(Y= Qupa 7 Qopyis + - -
in which #1-> p+ 1. Thus, for @ = m we can construct an operator Y, satisfying the
equation [L, Y, \] == 0 in all orders, The operator Y(m) is unique, Indeed, if each of the

”

’ ’ "
two operators )7(111) = ll’{r]nLl -+ qu+2 -4 ... and Y(m) 2 u;nL] -+ qu»:‘: -i- ... were to

satisfy the equation |L, Y oyl =0, we would obtain

’

(LY Gy = Y] == 0 Yy = Yy = wf @ X bLa)

"
{m
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which is impossible because an expansion of an operator satisfying the equation [L,
Y}= 0 in all orders should start with an operator of order gm + 1, Lemma 6 is proven,

8, Proof of Theorems 1 and 2, The proof is based on an enumeration of
the invariant sets of group G’, It is convenient to pass from the groups G’ and GxG’
to their algebras L and L* of the operators

_ 2 a % _ ) 9 *

Z=tgrtngrel, =Z+3L0@5 L (3.1)
The condition for the invariance of system (1,1) relative to the transformations from
group G x G’ yields [L, Z*] = O or equivalently

. dfs @ oy Bf2 0
(L, 2] = Zi(c.i ©) 5 o + 8O 555 (3.2)

Equality (3,2) must be fulfilled identically in z,, Z, and can serve to compute the
elements (i (c) of the vector matrix ({;7) of the algebra corresponding to group G’
(in the natural basis), From equality (3,2) we see at once that if Z is an arbitrary
operator of order {4, then the expansion of the right-hand side of (3, 2) with respect to
x,, %, starts, generally speaking, with terms of order U Hence(Z,/(c) = 0 for all §
which correspond to coefficients of powers of f; f, less than p. Hence we have a
block-triangular structure of the matrix (/) (the zeros are in the lower left corner
(*)) . If operator Z is maximal, then, in addition, it makes zeros out of all elements
of its own row, belonging to T = g {p — u) nonzero blocks, Here, this number cannot
be increased by any linear combination of operator Z with higher-order operators,

Let us consider the space R,. Operators Z & L, corresponding to nonidentity ( a
priori) transformations of space Hs, form a certain set L, (which is not a Lie alge-
bra), Let r, be the maximum number of operators Z) & L, such that

[L,Zw] =0*(gp+1), gp+1>s (3.3)
where O* (gp -+ 1) is an operator of order gp - 1, From Zy, =L, follows
gu +1<s (3.4)

A comparison of formulas (3, 2) and (3, 3) shows that in the vector matrix ({;/) corre-
sponding to group G, we can form exactly rg-rows consisting of zeros, This signifies
that group G’ admits of precisely p, = r;, — 2 functionally independent invariant
sets (**) ., We note that no role is played by the formality of the majority of the expan-
sions (for finite /) examined in this paper; for all maximal operators, besides Y ),

the number T is in fact determined by only a finite number of terms of the expansion,
The analyticity of operator Y ) either does not hold at all (then I > 1) or follows
from the assumption on the existence of an analytic symmetry group for the original
equations,

*) See [8] for details of the structure of the matrix ({;7) .

Editor's Note: There is no reference [8] in the original Russian paper, Correc~
tion of this obvious misprint is impossible,
**) Here, by an invariant set we mean and invariant manifold or a one-dimensional
continuum of hypersurfaces specified by an invariant,
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By « {X) we denote the number of maximal operators Xy satisfying conditions
(3.3) and (3,4); by P, (¥) , the number of maximal operators Y ;) satisfying condi-
tion (3.4); by B, (¥), the number of maximal operators Y ) not satisfying condition
(3.3). Then the number of invariant sets can be computed by the formula

pe=a (X)+ B (¥) — B (¥)—2 (3.5)
Let us compute the number p, for s = 2¢gh. The quantity & {X) equals the number
of integral solutions (relative to W) of the inequalities
g+ 1<2hqp+1+tv  (t=gm

whence & (X) = m. The quantity B, (Y) equals the number of integral solutions

of the inequalities
gp +1<C2¢h, pn>0
whence i, (Y) = 2h. The quantity B, (Y) equals the number of integral solutions
f the i 1i
o inequality 1< 2h, w0 (p=p+2h—m
(the value p = 0 is excluded because Y(o) = L satisfies condition (83, 3)), Hence
B (Y) = m — 1. By formula (3,5)
ps = 2h — 1 (s = 2gh) (3.6)
Now let s = 2gh + gk + ky, £ >0, 0Tk, < q, k% -+ k2 == 0. The quantity
o (X) equals the number of integral solutions of the inequalities
g+ 1<2h + gk +h <<gqu+1+71 (v=2gm

whence o (X) = m. The quantity f, (Y) equals the number of integral solutions

of the inequalities
gp +1<<2qh + gk +k, p>0
Hence

v 2k + k, ki =0
B = 2Rk, B >0
The quantity [52 (Y) equals the number of integral of the inequality

gp + 1+ 1<<2h +gk+k, p==0m
(v == q (2h — m))

(the values p = O, m are excluded since the operators Y (9), Y(m satisfy condition
(3.3)): we obtain 8, (¥) — [(m4k—2 i=0

: U mak—1, k>0
Thus, independently of m, k, k,

pe = 2k (s> 2qh + 1) (3.7

By comparing formulas (3,6) and (3, 7) we see that beginning with the number s, =
2qh -+ 1 the groups G’ (s 2> s) acting in R, as transformation groups, have one
and the same number {2k) of invariant sets,

The invariant sets of group G, depend, obviously, only on the points of space Rs,.
Moreover, each of them remammg invariant for all groups G’ (s > sg), is also
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invariant for the group G’ (this follows from the invariance of the subspace R,,relative
to the action of group G'). Besides these invariant sets the group G’ can have only
those which are consequences of the convergence requirement of the transformations,

From Lemma 6 it follows that the numbers T for maximal operators vary together
with %. However, the variations of the numbers 7 is accompanied by the variation of
the rank of the group matrices (Qij). Therefore, the manifolds

8n=0; 820=83,=0;...; 82q= ... =8grg =10 (3.8)

are invariant manifolds of group G’, and a further lowering of the rank of the mapping
G’ X R — R is possible only for g1 = 0. The number of invariant manifolds
(3.8) equals h—1 and the number of finite-dimensional invariants equals 2 + 1.

It is clear that two systems of equations of form (1,1) are equivalent if and only if the
points ¢’ = R, ¢" & R corresponding to them belong to one and the same orbit of
group G’. For this they must lie on one and the same invariant set of group G',whence

R =k, J ()=, . .., Tpu(c) = JTna(c")

(J« (¢) are the invariants of G’). Moreover, the points ¢’ and ¢” must lie either in
one connection component or in connection components which are congruent relative
to reflection, In the latter - ase the transformation taking ¢’ into ¢” (or ¢” into ¢'), is
not an element of a continuous one-parameter transformation, Theorem 1 is proved,

If as the simplest representations of systems (1,1) we take those which are obtained
from system (1,1) by a simple discarding of all expansion terms beginning with some
power s -+ 1, then all the hypotheses of Theorem 1 are fulfilled for formal thansfor-
mations when s > 2gk - 1. This proves Theorem 2,

4, Proof of Theorem 3, For A =1 and ¢ = 2 (a pair of pure imaginary
roots) the number of invariants equals two, For the standard series u = 2Z +ug + ...
and the operator X = X,; -+ X, <4 ... we have the formulas

Lu =gy (c)u® + gele)us® + .. ., Uy = 22
(L, X] = Ps® 4+ Ps® + ... = us (— g4 (6) X1+ Bily) -+ Ps° + ..
We can check that the functions
Ji(e) = Bl Ty (c) = g (c) uo® + 2g1 (¢} ua1 4 ga () 2

£ 87 ()
3 3
: 1 .- 3 1 ~u N
<¢1 = 2 -5 szszuz, g = Z 3 L2V’u2~L2”u2)
pe—s ¥ pe—s ¥

are invariants of group (G’ (the verification is conducted in terms of operators), The
parameters g, (¢) and g (¢) have the forms

1
ug"

1
g;(c):-l? Lius + ..., gelc) = Ltu, 4 ...

where the terms not written out do not depend on Lgzand L, ,respectively, Therefore,
the system of equalities J, (¢) = %y, J, (¢) = %, is single-valued and continuously
solvable with respect to the coetficients of the third and the fifth powers in the expan-
sions of the right-hand sides in Egs, (1.1). Consequently, these equations describe a
simply-connected (smooth) set in /75 . By virtue of the single-valuedness and of the
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continuous solvability of the equation &; (¢) = 0 with respect to one of the coeffici-
ents of operator L.’ ,the set g, (c) == 0 consists of two simply-connected parts:

84 (c) > 0 and g4 () <O.
Thus, all possible orbits of group G’ yield two types of relations

Jil) =%, Jo(@ =% £ (>0 J1(0) =%, Jo() =%, & (<0

Having chosen as the simplest form of Eqs, (1.1) the normal form and having computed
the invariants J,, J, for it and allowed for the sign of g,, we are convinced in the va-
lidity of Theorem 3 after passing to polar coordinates,

Note, The author acknowledges A, D, Briuno for having drawn his attention to the
important examples from [6], After analyzing them the author refined, in the galley
proofs, a2 number of formulations connected with the limit passage from R, to R. The
author considers it important to note that the difficulty of the limit passage is surmounted
in a2 unified manner by using the group~theoretic approach developed here, It was shown,
for example, that a group G’ acting in the coefficient space of the system 2" = 2%,

y =y -+ bozt .. .4 bpaft ... is intransitive and admits of a single (limit) inva-
riant J = bo+ ...+ byl k! 4+ L arising from the requirement of convergence of
the transformations, The systems indicated lend themselves to a complete classification:
only those ones are analytically equivalent for which the numerical values of invariant

I coincide, When / = 0 the system is equivalent to its own normal form, which agrees
with the Briot-Bouquet formula (see [6], p.125), These equations admit of an analytic
symmetry group only when [ = 0.
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