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We prove a classification theorem which permits us to simplify second-order 

systems ; in particular. to replace series in the right-hand side by polynomials 
without violating solution properties preservable by analytic transformations in 

the neighborhood of a singular point. Among such properties are all the topo- 

logical ones. The most important one of them is stability, Although the ques- 
tion of stability in critical cases (resonances of order q = 1, q = 2) have been 

studied in detail in [ l- 31, an arbitrary resonance in a second-order system 

yields the simplest nontrivial model the investigation of which helps us to un- 

derstand the nature of critical cases and its relation with local topological (in 
particular, analytic) equivalence of systems of differential equations [4, 51. 

In contrast to methods of reducing systems to normal form [6], in the present 
paper we use a group-theoretic approach. The study of the orbits of a group 
induced in coefficient space by the group of all analytic homeomorphisms of 
the neighborhood of a singular point, allows us to describe the set of systems of 

differential equations, obtained from each given system by analytic transforma- 
tions. Thus, having computed all the transformation invariants we can com- 

pletely classify the systems being considered. Here we clarify that the normal 
form is poorly suited for such a classification since it does not contain all re- 
presentatives of classes of analytically equivalent systems. The case of purely 

imaginary eigenvalues of the linear part has been considered separately by the 

author ( * ) . 

1, Statement of ths problem rnd the ra~ult. We consider aserof 
second-order systems of differential equations 

dx, / dt = WG + fl (c, ~1, 22) 
dx,,‘dt = - nzxz + f2 (ct $17 4 

(1.1) 

where IQ, 3z2 are relatively prime fixed positive integers ; fl, fa are all possible real 
functions, analytic in a neighborhood of the point x E {xl, zs} = 0 , with expansions 
without linear terms; c = {ci, c2, . ..} is an ordered collection of the coefficients of 
these expansions. The set of all c to which there correspond convergent series, forms 
an infinite-dimensional space R. A certain point c E n corresponds to each system 

(1.1). 
Definition 1, The systems c’ E R and cn E R are analytically equivalent 

(locally) if there exists an analytic homeomorphism of a neighborhood of the point 

l ) Analytic equivalence and stability of second-order systems with 1: 1 resonance. 
Preprint Noi4, Institute of Problems in Mechanics, Akad. Nauk SSSR, 19’72. 
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J = 0 into itself, transforming these systems one into the other. 
The problem is to find the necessary and sufficient conditions for the equivalence of 

systems (1.1) in the sense of Definition 1. 

An ordered collection of coefficients of homogeneous forms of fixed degree s, con- 
tained in the expansions of functions /i, f2, are considered as the coordinates of a point 

of an Euclidean space R,*. We set R, = R2*, R, = R,* x R,_l (direct product), 
s = 3, 4, . . . . The order relation for R, and R on a coincident set of elements is 

assumed identical. The coefficients of sth-degree polynomials obtained from the expan- 
sions of fi, fa by discarding terms of order greater than a, are the coefficients of the 

point c, E R, . If N, is the total number of these coefficients, then 

dim R, = hrs 

The space R can be treated as the inductive limit of the sequence Ra, Rs , . . . . 
Let us consider the group G of all analytic transformations of a neighborhood of the 

point z = 0, leaving this point in place and preserving the linear part of system (1.1). 

Transformations of group G induce the transformation group G’: G’ x R -+ R ‘( *) , 
so that every transformation from G x G’ transforms system (1.1) into a system of the 

same form with a phase vector x’ and coefficients c’. It is easily verified that the spa- 

ces R, are invariant relative to transformations from group G’, while the collection 

of transformations from G’ not identically acting in R,, forms a Lie Group cTS’. Here 

dimG,‘= N,+2 
Let 

u= 2 aklknx1k1x2k’ 
k,, krEM 

be an arbitrary polynomial or a formal power series and let N be the set of values of 
the integral function k,n, - k,n, for k,, k, E !I!. If v E N, we set 

y,,$v = 2 aklkpxlk1x2k2 
k,n,-knn,=v 

Then there hold the single-valued expansions 

With system (1.1) we associate the operator 

We consider the formal series u = up -j- uq+i + . . . (where Q = n1 i- n2 is the order 

of the resonance), satisfying the conditions 

Then 

(Lu)* = 0 for all v # 0 
uo = uq = x1nrx2n1 

Lu = jj (Lu);, z 5 G,, EE 2 g,, (c) (3~~~2~~~9~ 
x=2 x=2 x=2 

(1.2) 

l ) The corresponding equations are written out in finite form [7). 
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Here the parameters g,, do not depend on the phase vector x, and x is the exponent 
of the monomial ug = Xl%~~l. 

Theorem 1. The collection of manifolds in R 

r,: g2* (c) = . . . = gfJ = 0, g(h+l)q (4 =i= O 
exhausts, for h < 50 , all invariant manifolds of group G’. On each invariant manifold 
rh the group G’ admits of 1 + h invariants (i > 1) 

II(~), . . ., Ih+l (c) 

For x & h + 1 the functions g,, (c) and 1, (c) depend only on the points c E R, 
SO = 2@ f 1. The systems c’ E R and c” E R are equivalent if and only if the 
points c’ and C” lie on one and the same invariant set 

h’ = h”, I, (c’) = I, (c”) (1 < x 6 h + 1) 

and belong either to one and .the same connection component (points c’ and c” can be 
connected by a continuous curve lying in the same invariant set on which these points 

themselves do) or to two different ones provided that there exists a mapping x1'+ - 

x1, x2'-+ x2 generating a homeomorphism of these components one into the other. 

The following theorem describes the only case when the application of Theorem 1 
does not require an actual computation of the invariants. 

Theorem 2. System (1.1) is formally equivalent to the system 
s 

dXl -= 
dl %x1+ c fl,P 

p=2 
s 

dX9 
i= 
dt - n2x2 + 2 f2, tz 

p=2 

obtained from system (1.1) by discarding terms of order higher than s in the expansions, 

if and only if s>2qh-+I 

For one of the simplest cases, h = 1, q = 2 (pure imaginary eigenvalues of the 

linear part) the invariant-s of group G’ (there are two) have been computed explicitly. 
This has allowed us to classify systems admitting of an analytic symmetry group. The 

special result indicated is contained in the following theorem. 

Theorem 3. For h = 1, q = 2 the set of formally nonequivalent second-order 
systems is described by the systems (in polar coordinates) 

p’ = P3 @if G2X2P2) (1.3) 

cp’ = 63 + WlP2 

when the pair (x,, x2) of numerical parameters ranges over the whole real plane and 
the oi take the values +I independently of each other. 

We note that systems (1.. 3) are easily integrated and yield 24 topologically different 
pictures in the space x x t . The proof of Theorems 1 and 2 is carried out in Sect. 3. 
It is preceded by the tormulation of auxiliary propositions (Sect. 2) whose proofs. except 
for the fundamental Lemma 6, are omitted (they may be reproduced by the scheme given 
in [7] ) . Theorem 3 is proven in Sect. 4. 
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2, Auxiliary proporition,, Lemma 0. 
series 

uniquely. 

Conditions (1.2) define the formal 

. . . (Z/i) 

Definition 2. A series (i?. 1) satisfyinf conditions (1.2) is said to be standard. 
Definition 3. 

b(P -I- $I+ If? 
A formal series u. satisfying the equation Lu = ~~(~~1) + 0 

in which the form ZO~(~+~) E#G 0 is the Iowest term in the expansion 
of the right-hand side, is called a p-series. The description of all p-series yields the 
following lemma. 

Lemma 1. Let Gxqr computed for a standard series, satisfy the conditions 

G,, = . . . = G,, = 0, Gth+l,P #0 
Then : 

1) there does not exist a formal series satisfying the equation LV = 0 in all 

orders ; 
2) the set of all p-series coincides with the set of formal series of the form 

v, [U] = nzU-h+l + 0 (Q (p - h -?- 1) + I>, a # 0 

where u is a standard series, ~-h+l is a power of it; 

3) if u is an arbitrary p-series, then 

Lu = a (p - h + 1) z$-hGcr,+tj4 + 0 (P (P + $1 -f iI 

Let 5 = & -j- &+, t . . ., q = Q --i_ Q+I $- . . . be formal power series. The ope- 
rator series 2 = zh + Zk+r i_ . . . (i?$~ = &3 / dx, + ri*a / 8.~~) is called an operator 

of order k. We set 2,” = $?‘“‘a / r3.z, -_1- T$=* a/ 13~s. As usual, let [L, Z] be a com- 
mutator. 

Lemma 2. If an operator 2 of order ~1 satisfies the equation fL, 21 = 0 to 
within terms of order m > CL, then 2, = Z,*O , necessarily, 

0, P# fVi_ 1 
.S$J. = 

{ .fs*-l)fQ (2$, + p,L,f, p = kq -i_ 2 

where (r;*, p,~ are constants, 

x1 = 21 &i-x& 
a 

L, = w1 a~, 
a - nzx %a52 

Lemma 3. Let the operator Z = Z:, -j- Zp+l f . . . satisfy the conditions 

[L, Zlv -= 0 for all v -f: 0, 2” zzz TJ” (2.2) 

where the operator U” is preassigned, Conditions (2.2) define operator 2 uniquely. 
The identity 

(2.3) 

is valid for the operator %r defined by conditions (2.2). 
Definition 3. The operator Zo, = Zpq+l + Zpqta + . . . . satisfying identity 

(2.3) is called a p-operator. If the operator U” is chosen so that the number p is maxi- 
mal, operator .?? is called maximal. 

According to Lemma 2, maximal p-operators necessarily form the linear hull of the 
set of independent operators of the form 
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x0, = %'*xl -t &q+2 + * . .I Y,,) = u,l”L, + Y,,,, + . . . (2.4) 
The immediate problem is to compute for them the positive integers p and Z = q (p - 

CL). 
Lemma 4. Let the operator X 3 Xc,,) = X, + X2 + . . . be maximal. We 

The inequality m 4 h is valid. 
I,emma 5. The equality [L, Z(P)] = P&+r f P;~+r)a+r f . . -, in which 

p;j4+1 = VQ t*P” mq+l' m<h ay#O 

ap”*rp;q+l + cluq 
P-1G (h+l)q b$X, + $.L,) > m = h 

is valid, independently of the choice of ZFp, , for the maximal operator 20, = uqP 

(UPX, + b,L,) -I- * . . @P2f qL* -# 0) - 
Le m ma 6. (1) When ur # Othe maximal operators 2~~1) are contained among the 

X (p). For them 
p=cL+m, r = qm 

2) When uiL = 0, ]L #m the maximal operators &,., are contained among the 

operators I’,,,,. For them 

p =p +2h-mm, T =: q (212 - 772) 

3) For p = m and for finite h there exists a unique operator Z(,J G Yt,,,) 
satisfying the equation ]L, Z] = 0 in all orders. For it r ~- m. 

Proof. By virtue of Lemmas 4 and 5 the proof of Lemma 6 splits up into the cases: 

(1) no = h: (2) m < h, a,, # L’; (3) ~7, < h, n,, = 0. 
0 ’ 

1) Let 1~. =Oh. Then IL, Xi = Prlh+r -; J&l+l) f . . . Let us ascertain the struc- 

ture of operator P,,,,+t . For a standard series u , 

I, (.Yu) = [L, S] rt + XLU = P;R+prl A- q (h + 1) G(;!+l),, ‘- . . 

P;,,+I = Uqh (2X-1 + PLl) 

Hence 
L (XII) y q ir i_ (h ‘- 1) gc,l+lj (I, url ‘t-+1 + . . . 

Let us show that 2 + (IL+ I) P(~+,) rl + 0. Assuming the contrary, we find I, ( SU) = 
~~~ c,,+~) ,1 f - P. We define the series Q -= ~1)~ Ch+lj+r :- . . by the relation (Lo)” = 
WY solvable for all v # 0. Then, 

Lu -= 1C -Lo = I(.0 - (Lo,)” -~ 1(’ &+,;j + * . . (k > 1) 

i.e. zi E xu -- u) = cpv + . . . is an (h + k)-series. which is impossible when k > 2. 

(Lemma 1) . Hence, using Lemma 1 repeatedly, we obtain 

r*=---/zu “(:itJ) Q’ clht1 = u;’ (- hqhilj ,XI + PL,! 

By the formula in Lemma 5 we find 

(2.5) 
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I) 
and this result does not depend on the choice of the operators Zi(,l+lj bl. Z, CL+2j+,, . . . 
IFI other words, when UI = h, IL # II (if ap = 0, then bP# 01 the operator 20, is maximal 

and for it 
P = 1” 7 h, z TT qft 

When p = h we take Q = - 3aP I ug(,,, 1j 9. Then 

5; = 0, IL, Z(h)] = +‘);; (‘Lh+t)+f i- . . * 

By formula (2.5), 
sh+l 

[L, Z(h,,)l = Yq fah+lqh+l) *Xl + &+$I + * . . 

‘;l+l = ‘hi,P + (h $ ‘) ‘i,+lg(iltl) P 

we obtain 

Acting analogously, i.e. choosing in the operators Z(,+,) = ZL~‘~ (ah+$XISbll+kLl)+... the 
parameters ah+&, bh+k from the formulas 

% & - ahdi B 

%+k. = (1. b(b+l) P ’ bh+h = @ + 4 $Y(,,+ k) g 

we construct the unique operator 2 = Z(,) - Zc,+,) - Z(,,) - . . ., satisfying the equation 

IL, Z] = 0 in all orders. 
2) Let NIL < h, a,# 0. According to Lemma 5 

PI Z(p)l = apu~P~mTl + . , . 

Since this result is independent of the choice of operator Z&, the operator ZtPj is 

maximal and p = \L Jr I)!, z’ = qm 

Without loss of generality $ = 0, so that Zti*, is found among the operators X(,) . 
3) Now let ,?a< 4 a = I-i 0. By means of the constructions already used earlier we 

see that 
Y 

Prlmil u = 0, whence p 

p;*+r = P,u*‘nL 1’ 3,, + O (2.6) 

If Y,,, = P u ‘%r + Yq~+a$. f * . is a maximal operator, this signifies that the values of 

Y;(P+Y)+I = % I*+y (a(Y)_ x ..’ b(Y) L ) ptc 1 I- p-u 1 are chosen for *f > 1 in such a way that the num- 

ber p in the relation 0 
[L, YtP*,l = Q;,,+l + Qycprt)tl +. . 

is maximal_ It is not difficult to prove that from the maximality of P follows 

O (‘2.7) 

Further, let a?! t*ii = 0 foi r < yU and n{i;\O + 0. For 1 < r < ~0 we define inductively 

By induction on y and by direct verification for Y -= 1 we see that the formulas 

[L, Y$Jj :z - @-1 #Z G@-& -I- . . 

yg) = ~~$(‘LyLI ,- Yj;;;.r.i)+a -;- . . r<i1--1 
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aretruefor T=f,...,yo--1. Wedefine 

We obtain 
[L, Y&f] = - p.ut-2 Q (h+l)QL1 + ’ * ’ 

If To>h--* 2) To<h-m. 3f rc=h-m, sZ’f.0 

leads to a contradiction (this is proved by means of constructions of a single type). 

Thus, 
&I*) =-_ . PI 
EL+1 . . = a!.&+,,-m-l = 0, “fj,+m # ’ (2.10) 

Using the recnrrence relations (2.8) and equalities (2.9) and (2.10). we find 

Yci*) -1: CpL + a;~h_mU~+h-mX + Y$$$+a + . . . 

cp = up + b$zP+l+ . . . + bph_mu~+~-~ 

where cp is a polynomial of degree p + h --m relative to a standard series, We con- 
sider the series EU s Y(uju. We have 

w = ‘i@$_mr$r Vin-m+1 + . . . 

We denote C = GChtljq + ‘(h+a)Q + ’ . * and we introduce the series 

11;’ = 70 _ cpG z q@, _ I,~+‘-‘+~ + . . . :*tr m q 

A simple calculation yields 

Lru’ = Q;P+l”a + (h + 1) ~inj~~~~_~~~~+~~~~~~~-~+’ + . . . (2.11) 

Let Q (P + 1) < 4 (P + 2h - m. + 1). Then IN’ = Q~,+,~, t_ . . and 2~’ is a p -series. 

According to Lemma 1 , p + h -- m + 1 = p - h -c I and, consequently, Q (P + 1) = 
q (p + Zh - 111 -1. I), in spite of the assumption. it (I tp t 1) > ‘7 (CL + ~tl- ~2 + 11, then 
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which is impossible when u # I,L. 

Thus. if U # VL, the equality ‘I (p + 1) = 9 (p + 2h - ,n -t iI is fulfilled, whence 
P = P -!- 2h - 117. Here we obtain 

Q;,+pq = (P - 4 w~~_m~;+h-mG~,,+I~q + . . . 
so that 

[-G y(p)1 = (P - m) a~~~_mg~h+,)~‘~fah-mX1 $ Ap~~f2h-mL1 + . . . (2.12) 

Thus, the operator XCt*) is maximal for 1~ # m and 

p = p + 2h - m, ‘c = q (2h - m) 

Now p = Then w’ qa~m)u~l + . . . 

Ycm,l = 

Let show that in there is no finite can be Indeed, 
let 

Q&a+, = q (CXI + ml), C’j-D?+o 

We consider the maximal operators Y(p+m_nhj, X(,_,). For them 

[L, Y (ptm-zh)] = ap-h (p+m-2h)g(h+l)q (p - 2h)u;q -j- A,+,_&$L, $-... 

jg+/yh) # 0) 

We determine the numbers a and p by the formulas 

aap_y-ah)gCh+l)q (p - 2h) = c 

u r-1 
ptm-2lr i-PPm"p_m=D 

This is possible since the determinant of this system 

A == (p - “h) P,~al-,,_,a~~~-“h)g(h,_l)rl # 0 

The operator Y = Y(,) - aYCI,,m_2hj - pd-CP__m) satisfies the equation 

[4 Y! = Q;p,,.l -i- Q;l;j,l+lj+l + . 

in which IJI -3 P + 1. Thus, for IL = MZ we can construct an operator Y(,,,) satisfying the 
equation [L, Yc,,,] =- 0 in all orders. The operator is unique. Indeed, if each of the 

two operators Y;,l,) =- rd:L + Y&, +2 --f . and Y” 

Y(,,) 

(nr) -= IC~L + Yl,p,_,2 -)- . were to 

satisfy the equation IL, Y,,;)] == 0, we would obtain 

I4 Y;?@ - Y;,,,,] z 0, Y&) -- y;,,,, = UC’+’ (LYl j- o/J ?- . 



Analytic equivalence of second order-systems for arbitrary resonance 971 

which is impossible because an expansion of an operator satisfying the equation [L, 

y] = 0 in all orders should start with an operator of order qm + I. Lemma 6 is proven. 

3. Proof of Theorem: 1 and 9. The proof is based on an enumeration of 

the invariant sets of group G’. It is convenient to pass from the groups G’ and G X G’ 

to their algebras L and L* of the operators 

z=E&+Q&EL, Z*=Z+2JSi(C)$EL* (3.1) 
i 

The condition for the invariance of system (1.1) relative to the transformations from 

group G x G’ yields [L, Z*f = 0 or equivalently 

(3.2) 

Equality (3.2) must be fulfilled identically in xi, x2 and can serve to compute the 

elements cij (c) of the vector matrix (&3) of the algebra corresponding to group G’ 
(in the natural basis). From equality (3.2) we see at once that if 2 is an arbitrary 

operator of order ~1, then the expansion of the right-hand side of (3.2) with respect to 
xi, x2 starts, generally speaking, with terms of order p Hence(Q (c) 3 0 for all i 
which correspond to coefficients of powers of fi fi less than ~1. Hence we have a 

block-triangular structure of the matrix (?&I) (the zeros are in the lower left corner 

( *)) . If operator Z is maximal, then, in addition, it makes zeros out of all elements 
of its own row, belonging to -t I= q (p - p) nonzero blocks. Here, this number cannot 
be increased by any linear combination of operator 2 with higher-order operators. 

Let us consider the space R,. Operators Z G L, corresponding to nonidentity ( a 
pr i or i ) transformations of space R,, form a certain set L, (which is not a Lie alge- 

bra). Let r, be the maximum number of operators 2~~) E L, such that 

14 qd = 0” (qp $- I), W-I-l>s (3.3) 

where 0* (qp + 1) is an operator of order qp .+ 1. From Z,, E L, follows 

q+/-l<s (3.4) 
A comparison of formulas (3.2) and (3.3) shows that in the vector matrix ( @) corre- 

sponding to group G,’ we can form exactly I^,-rows consisting of zeros. This signifies 

that group G,’ admits of precisely pS = r, - 2 functionally independent invariant 
sets(**) . We note that no role is played by the formality of the majority of the expan- 
sions (for finite h) examined in this paper ; for all maximal operators, besides Ycrn), 

the number z is in fact determined by only a finite number of terms of the expansion. 
The analyticity of operator Ycm) either does not hold at all (then I > 1) or follows 

from the assumption on the existence of an analytic symmetry group for the original 
equations. 

*) See [8] for details of the structure of the matrix (@) . 
Editor’s Note: There is no reference [S] in the original Russian paper. Correc- 

tion of this obvious misprint is impossible. 
**) Here, by an invariant set we mean and invariant manifold or a one-dimensional 
continuum of hypersurfaces specified by an invariant. 



978 L.M.Markhaahov 

By c: fX) we denote the number of maximal operators X(p) satisfying conditions 
(3.3) and (3.4) ; by PI (Y) , the number of maximal operators Yc,j satisfying condi- 

tion (3.4); by Pa (Y) , the number of maximal operators Y(,j not satisfying condition 
(3.3). Then the number of invariant sets can be computed by the formula 

PS = a (XI + I% (Y) - Bs (Y) - 2 (3.5) 

Let us compute the number pd for s = 2qh. The quantity a (x) equals the number 
of integral solutions (relative to P) of the inequalities 

g#r + 1 < 2Yh < 4P + 1 + r (r = PI 

whence 

(p = p + 5% - d 

(the value p = 0 is excluded because I’,,, -3 L satisfies condition (3.3)). Hence 

8‘2 (Y) 1 tn - 1. By formula (3.5) 

p,$ = 2h - 1 (s = 2qh) (3.6) 

Now let s = 2qh +- qk f ii;, 
a (X) 

K > 0, 0 < k, < q, k3 -i- k12 # 0. The quantity 
equals the number of integral solutions of the inequalities 

QP + 1 s 2qh -I- qk + k, < q,u + 1 + -c fz = qn) 

whence a (X) = M. The quantity fi 1 (Y) equals the number of integral solutions 
of the inequalities 

I-00 
Hence 

qy + 1 G 2qh + qk -I- k,, 

P1fY)= 1 ;;;;y+l, ;:I: 

The quantity flz (Y) equals the number of integral of the inequality 

Q~ + 1 -k r < 2yh + qk i k,, p=+% m 
(^G = ‘I (2h -- m)) 

(the values p = 0, nt are excluded since the operators Ycnf, Ytmt satisfy condition 

(3.3)) ; we obtain 

Thus, independently of m, k, k, 

By comparing formulas (3.6) and (3.7) we see that beginning with the number a0 = 
2qh $- 1 the groups G,’ (S > so) acting in H, as transformation groups, have one 
and the same number (2h) of invariant sets, 

The invariant sets of group G,,’ depend, obviously, only on the points of space Rs,, 
Moreover, each of them remaining invariant for all groups G,’ (s > so), is also 
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invariant for the group G’ (this follows from the invariance of the subspace R,, relative 
to the action of group G’). Besides these invariant sets the group G’ can have only 

those which are consequences of the convergence requirement of the transformations. 
From Lemma 6 it follows that the numbers 7 for maximal operators vary together 

with h. However, the variations of the numbers T is accompanied by the variation of 
the rank of the group matrices (ci’). Therefore, the manifolds 

g,, = 0; gs, = gs, = 0; . . . ; g,, = . . . = g,,p = 0 (3.8) 

are invariant manifolds of group G’, and a further lowering of the rank of the mapping 

G’ X R --t R is possible only fdr gth+l)q = 0. The number of invariant manifolds 
(3.8) equals h-1 and the number of finite-dimensional invariants equals h -j- 1. 
It is clear that two systems of equations of form (1.1) are equivalent if and only if the 

points c’ E R , C” E R corresponding to them belong to one and the same orbit of 

group G’. For this they must lie on one and the same invariant set of group C;‘,whence 

h’ = h”, J1 (c’) = J1 (CO), . . . , J,,+[ (d) = Jh+[ (c”) 

(J, (c) are the invariants of G’). Moreover, the points c’ and cn must lie either in 
one connection component or in connection components which are congruent relative 
to reflection. In the latter : nse the transformation taking c’ into c” (or c” into c’), is 

not an element of a continuous one-parameter transformation. Theorem 1 is proved. 
If as the simplest representations of systems (1.1) we take those which are obtained 

from system (1.1) by a simple discarding of all expansion terms beginning with some 
power s + 1, then all the hypotheses of Theorem 1 are fulfilled for formal thansfor- 
mations when s > 2qh f 1. This proves Theorem 2. 

4. Proof of Theorem 3. For h = ‘i and q = 2 (a pair of pure imaginary 
roots) the number of invariants equals two. For the standard series u = ZZ f us f . . . 

and the operator Xc,,) = X, f Xz + . . . we have the formulas 

Lu = g, (c) us” + g, (c) 2423 + . . . ) us = zz 

[L, X,,,] = PsO + P,O + . . . = u2 (-- g, (4 x1 + WI) -k ps” + . * * 

We can check that the functions 

J1 (c) = $$ Jz 64 = gfl (4 Q? + 2g4 (4 U2Ql + gt (c) $2 
gz (c) u$ 

are invariants of group C’ (the verification is conducted in terms of operators). The 
parameters g4 (c) and g, (c) have the forms 

61 (c) -; $- Lo,% + . . . 7 g,(c)=~L,“uz+... 

where the terms not written out do not depend on L, and _L 5 , respectively. Therefore, 
the system of equalities J1 (c) = x1, J2 (c) = x2 is single-valued and continuously 
solvable with respect to the coefticients of the third and the fifth powers in the expan- 
sions of the right-hand sides in Eqs. (1.1). Consequently, these equations describe a 
simply-connected (smooth) set in 11, . By virtue of the single-valuedness and of the 
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continuous solvability of the equation g4 (c) = 0 with respect to one of the coeffici- 
ents of operator .La” , the set g4 (c) # 0 consists of two simply-connected parts: 

& (4 > 0 and g4 (4 < 0. 
Thus, all possible orbits of group G’ yield two types of relations 

J1 cc) = % Jz CC> = X21 g4 (c) > 0; J., (c) = xl, J2 (c) =x2, g, (c) < 0 

Having chosen as the simplest form of Eqs. (1.1) the normal form and having computed 

the invariants J,, J2 for it and allowed for the sign of g,, we are convinced in the va- 
lidity of Theorem 3 after passing to polar coordinates. 

Note, The author acknowledges A. D. Briuno for having drawn his attention to the 

important examples from [S]. After analyzing them the author refined, in the galley 

proofs, a number of formuIations connected with the limit passage from R, to R. The 
author considers it important to note that the difficulty of the limit passage is surmounted 
in a unified manner by using the group-theoretic approach developed here. It was shown, 

for example, that a group G’ acting in the coefficient space of the system 2. = zz, 
y = y + b,s + . . . + bk:t++’ + . . , is intransitive and admits of a single (limit) inva- 

riant I = b, f . . . + bk I kl + .‘. . arising from the requirement of convergence of 
the transformations. The systems indicated lend themselves to a complete classification: 

only those ones are analytically equivalent for which the numerical values of invariant 
I coincide. When I = 0 the system is equivalent to its own normal form, which agrees 

with the Briot-Bouquet formula (see [6], p.125). These equations admit of an analytic 

symmetry group only when I = 0. 
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